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The role of nonlinear critical layers in
boundary layer transition

By M. E. GOLDSTEIN

National Aeronautics and Space Administration, Lewis Research Center Cleveland,
OH 44135, USA

Asymptotic methods are used to describe the nonlinear self-interaction between pairs
of oblique instability modes that eventually develops when initially linear spatially
growing instability waves evolve downstream in nominally two-dimensional laminar
boundary layers. The first nonlinear reaction takes place locally within a so-called
‘critical layer’, with the flow outside this layer consisting of a locally parallel mean
flow plus a pair of oblique instability waves — which may or may not be accompa-
nied by an associated plane wave. The amplitudes of these waves, which are com-
pletely determined by nonlinear effects within the critical layer, satisfy either a single
integro-differential equation or a pair of integro-differential equations with quadratic
to quartic-type nonlinearities. The physical implications of these equations are dis-
cussed.

1. Introduction

Transition to turbulence in boundary layers usually begins with initially linear and
non-interacting instability waves that grow to nonlinear amplitudes as they prop-
agate downstream. The first nonlinear stage of evolution (which might more ap-
propriately be referred to as a modal-interaction stage) is usually characterized by
the rapid growth of three-dimensional disturbances due to resonant interactions be-
tween instability waves and between instability waves and streamwise vortices. This
phenomenon is usually studied experimentally by artificially exciting the flow with
small-amplitude nearly-two-dimensional and single-frequency excitation devices. The
initial unsteady motion just downstream of the excitation device should then have
harmonic time dependence and be well described by linear instability theory. In
most cases, the mean flow is relatively two dimensional and fairly close to a Blasius
profile in the low Mach-number experiments and to the corresponding compressible
flow in the high Mach-number experiments. (There are actually very few controlled
excitation experiments at high Mach numbers, but there is some hope that this
will change in the near future.) The instability-wave growth rates should therefore
be small compared to the inverse boundary-layer thickness A~! at subsonic Mach
numbers, but can be of the same order as A~! at sufficiently high supersonic Mach
numbers (due to the generalized mean-flow inflection point that occurs in this case).
However, mean-flow divergence effects will usually cause the growth rate to be small
(relative to A=1) by the time nonlinear effects set in, even in these more unstable
supersonic flows. This is because, in the latter type of flows, the excitation is usually
located in the vicinity of the peak local growth rate of the relevant normalized in-
stability growth-rate versus frequency curve — such as the one shown schematically
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Figure 1. Typical linear growth-rate curve.

in figure 1. The growth rate should therefore decrease as the (constant frequency)
instability wave propagates downstream into a region where (in most cases) the
boundary-layer thickness A will have increased.

This suggests that the method of matched asymptotic expansions can be used
to describe these flows: with an ‘inner’ nonlinear region, in which the instability-
wave growth rate is small, and a much larger ‘outer’ region in which the unsteady
flow is governed by linear dynamics, but in which mean-flow divergence effects are
important (Goldstein & Leib 1988). Once the solutions in these two regions have been
found, a uniformly valid composite solution that applies everywhere in the linear and
nonlinear regions can be obtained in one of the usual ways — say, by multiplying the
linear and nonlinear solutions together and then dividing through by their common
part in the overlap domain (that always exists between the inner and outer regions).

Smoke wires and other flow-visualization devices can be used to observe the
flow when the Mach number is sufficiently small. The initial nonlinear (or modal-
interaction) stage then becomes visible through the appearance of rows of A-shaped
structures, which can either be aligned or staggered in alternating rows - depending
on the experimental conditions. The unstaggered arrangement, which was originally
observed by Klebanoff & Tidstrom (1959) and Klebanoff et al. (1962), is usually
referred to as ‘peak-valley’ splitting (or K-type transition). It is (as pointed out by
Kachanov & Levchenko (1984, §5.2)) a complex phenomena that is explainable by at
least three different (relatively weak) resonant-type interaction mechanisms — each of
which probably played some role in one or more of the many experiments that have
been carried out to study this phenomena (see Kachanov et al. 1985; Kachanov 1987;
Hama & Nutant 1963; Kovasznay et al. 1962; Nishioka et al. 1979). A resonant-type
interaction between oblique instability waves and weak streamwise vortices seems to
have played a dominant role in the original experiments of Klebanoff & Tidstrom
(1959) and Klebanoff et al. (1962). However, Stewart & Smith (1992) propose a differ-
ent mechanism that seems to be in good agreement with experimental observations.

The staggered arrangement, which tends to predominate at the lower excitation
levels, is usually associated with a weak nonlinearity resulting from a resonant-triad

Phil. Trans. R. Soc. Lond. A (1995)
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interaction between a pair of oblique subharmonic modes (which, in most cases, orig-
inated from the background disturbance environment) with the basic fundamental
two-dimensional mode generated by the excitation device. This type of interaction
was originally analysed for Tollmien—Schlichting-type (i.e. viscous-type) instabilities
by Craik (1971) and subsequently by many others who used finite Reynolds-number-
type approaches and recently by Smith & Stewart (1987) who used asymptotic meth-
ods. (However, see Khokhlov (1994a) and the discussion section of Wu et al. (1994).)
Moreover, there are now a number of carefully controlled experiments (Kachanov
et al. 1977; Kachanov & Levchenko 1984; Saric & Thomas 1984; Saric et al. 1984;
Coke & Mangano 1989) that basically verify the resonant-triad mechanism, but the
observed growth rates tend to be much smaller than those predicted by the finite
Reynolds-number theories (Khokhlov 1994b).

Craik (1971) proposed that the resonant-triad interaction could also play a role in
the aligned or K-type transition, but with the interaction taking place between a pair
of oblique modes at the forcing frequency and the small two-dimensional instability
mode that is invariably generated at the first harmonic of this frequency (see §5.2
of Kachanov & Levchenko (1984) for a more complete discussion of this issue). All
of the relevant modes could then be generated by the excitation device and would
not have to emanate from the background disturbance environment. However, the
analysis could not predict the observed gradual transition from a two- to a three-
dimensional flow structure unless the (common) amplitude of the oblique modes were
able to exceed that of the two-dimensional fundamental and, consequently, that of the
(usually much smaller) first harmonic that causes the enhanced growth of the oblique
modes. This behaviour would obviously be favoured if the oblique modes were unable
to suppress the growth of the first harmonic until they themselves became very large
— because this would allow the oblique modes to continue their rapid growth until
they became larger than the more slowly growing two-dimensional mode generated
at the forcing frequency. As shown below, the present high-Reynolds-number theory
actually exhibits this behaviour. In any event, this latter mechanism probably played
an important role in the recent peak-valley splitting experiments of Kachanov (1987)
and Kachanov et al. (1985) but may not have been very significant in the original
Klebanoff experiments.

2. The outer linear flow

We first consider the initial linear region just downstream of the excitation device
where the instability waves are still small enough so that no significant modal in-
teractions take place. At supersonic Mach numbers — below about 6 or so — where
the so-called first-mode instability is dominant (Mack 1984, 1987), the most rapidly
growing modes are oblique instability waves, and the first modal interaction to take
place would probably be the self-interaction between symmetric pairs of oblique in-
stability waves (Leib & Lee 1994). In which case, it is appropriate to suppose that
the unsteady motion is initiated from a pair of oblique (equi-amplitude) instability-
wave modes with the same streamwise wave number ¢, and scaled angular frequency
wlA/Us = ayc, and equal and opposite spanwise wave numbers (+0). (Us is the
characteristic velocity of the flow, and the subscript r is used to denote the real part
of the wave number « and the phase speed ¢, as well as all other quantities to which
it is appended.) These two waves combine to form a standing wave in the spanwise
direction that propagates only in the direction of flow — which is the situation that
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most frequently occurs in wave excitation experiments that typically involve longish
excitation devices placed perpendicular to the flow.

The two-dimensional mode usuallyf exhibits the most rapid growth at subsonic
speeds provided, of course, that the mean flow is sufficiently two dimensional. How-
ever, even very weak spanwise periodic mean-flow distortions (i.e. streamwise vor-
tices) can cause appropriate oblique modes to grow faster than the plane wave at
the high Reynolds numbers being considered herein. This could occur, for example
(Goldstein & Wundrow 1994), through a kind of resonant-interaction mechanism
that was first considered by Nayfeh (1981) and Nayfeh & Al-Maaitah (1988) and
later applied to Gortler vortices by Hall & Seddougui (1989). In which case it would
again be appropriate to initiate the unsteady motion from a pair of oblique waves
of the type described above — but with the growth rates equal to the parametric
growth rates given in Goldstein & Wundrow (1994). But, even when no streamwise
vortices are present (or when they are very weak) and the mean flow is effectively
two dimensional, the oblique modes can eventually exhibit the most rapid growth
due to a parametric resonant interaction with the plane wave that exhibits the most
rapid growth in the initial linear stage. The oblique modes can then become large
enough to interact themselves nonlinearly upon passing through the parametric reso-
nance interaction stage, which can be treated simultaneously with the self-interaction
stage if we initiate the unsteady motion from a resonant triad of instability waves
in the initial linear region — a plane fundamental-frequency wave, with scaled angu-
lar frequency 2w'A/U,,, and a pair of oblique equi-amplitude subharmonic waves,
(again) with the same streamwise wave number and angular frequency, «, and a.c;,
respectively, and equal but opposite spanwise wave numbers +£. In this case, the
term ‘resonance’ implies, among other things, that the three waves all have the same
phase speed ¢,. This occurs (for the small growth rates and large Reynolds numbers
that are of interest here) when

B = \/3ara (21)
which means that the oblique instability waves make a 60° angle with the direction
of flow. We can, of course, allow this angle to be arbitrary in flows where an oblique
mode can grow more rapidly than the plane wave and resonant reaction with the
latter is not required to enhance the growth rate of the former.

Our choice of the initial linear modes may, at first, seem somewhat artificial, but
the linear and parametric resonance stages act as narrow band filters that are able to
select out these disturbances from relatively generic background disturbance fields.
Moreover, we eventually show (at the end of §3) that the resonance condition (2.1)
does not have to be satisfied exactly and that the results actually apply to a fairly
broad range of wave numbers about the resonant condition.

It is only possible to develop a systematic asymptotic theory of these phenomena
when the Reynolds number Re is assumed to be large. Then, since we also require
that the instability-wave growth rates be small in the nonlinear region of the flow,
the initial modal and nonlinear interactions will be confined to a localized region
centred around the ‘critical level’ (Lin 1951), where the mean-flow velocity, say U,
is equal to the common phase velocity ¢, of the two or three modes that interact
there (see figure 2). This occurs because the flow must be nearly steady in a reference
frame moving downstream with the phase velocity ¢, at the small growth rates being

1 Stewart & Smith (1987) show that non-parallel flow effects can sometimes cause the oblique modes
to grow faster than the two-dimensional mode.
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Figure 2. Asymptotic structure of flow.

considered herein, and, the corresponding mean flow is then equal to zero at the
critical layer by definition. There is, therefore, no mean flow to linearize the analysis
about in this region, and the nonlinear and/or modal interaction effects will then
come into play at the lowest possible order of approximation there. This explains
why energy exchange between resonant modes (which share a common critical layer)
is much more efficient than between non-resonant modes.

The flow outside the ‘critical layer’ is still governed by linear dynamics, which
means that it is either (a) still given by a locally parallel two-dimensional streamwise
mean flow, say U(y), or perhaps (in the case where the wavelength scale factor « is
< 1) a nearly two-dimensional streamwise mean flow, say U(y) +o*Uy(y,2Z), plus a
pair of oblique instability-wave modes or (b) is given by a locally parallel mean flow
U(y) plus a pair of oblique instability modes accompanied by a first harmonic plane
(i.e. two-dimensional) instability wave. The (external) transverse velocity fluctuation
v is then given (in the general compressible case) by

v = eod Re[sec 0 A(z0) B(y)e'™ cos Z + (e/a)/® Ao(x0) Po(y)e'*], (2.2)

where

=oca(x —oct), Z=opz, (2.3)

[<() =ofero(iss) ]

[ ( (1+No )1/3]’

zo = o(e/o)z, (2.5)
the scale factor o < 1 has to be inserted in order to simultaneously cover the O(1) and
long-wavelength cases, # = tan~!(3/@), and Re denotes the real part. The stream-
wise, transverse and spanwise coordinates, normalized by the boundary-layer thick-
ness 4, are x, y and z, respectively; ¢ denotes the normalized time, and 8 denotes the
propagation angle of the oblique mode (which is equal to %71' when the oblique modes
are resonant with the plane wave, but is otherwise arbitrary). The scaled spanwise
wave number, streamwise wave number and phase speed [, @ and ¢, respectively, are
purely real.

The first term on the right-hand side of equation (2.2) represents the oblique
modes, while the second term represents the plane wave. ¢ and @, are the linear
normal-mode shapes which can, in general, be found by solving the appropriate
Rayleigh’s equation (but see below). A and Ay, which depend only on the streamwise

(2.4)

Phil. Trans. R. Soc. Lond. A (1995)
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coordinate (and then only through the scaled streamwise variable xo, which varies
on the length scale of the nonlinear region which, not very surprisingly, turns out to
be the reciprocal instability-wave growth rate) determine the overall growth of the
instability waves and are, therefore, the most important quantities in these equations.
They are completely determined by the nonlinear dynamics within the critical layer
and are, in practice, found by equating the velocity jump across the critical layer, as
calculated from the external linear solution (i.e. the solution to Rayleigh’s equation)
to the velocity jump calculated from the internal nonlinear solution within the critical
layer. € and e(e/o)'/? are the amplitude scale factors for the oblique and plane waves,
respectively, where € is always much less than o.

Notice that the growth-rate and oblique-mode amplitude scalings o(e/o)'/? and
€, respectively, are related. This relation ensures that linear growth and nonlinear
(or modal interaction) effects will both impact the external linear solution at the
same asymptotic order. It is dictated by the requirement that the nonlinear stage
correspond to the first stage of evolution beyond the initial linear region, i.e. that
the nonlinear solutions match onto the upstream linear solutions in the matched
asymptotic sense. The Benney-Bergeron (1969) parameter A = 1/e0® Re, where Re
is the Reynolds number based on the boundary layer thickness 4, is (in the present
context) a measure of the relative importance of viscous to growth-rate effects within
the critical layer, i.e. these effects will be of the same order when A = O(1).

The wavelength scale factor o can be set to unity when the initial linear instability
wave has order-one wavelength — as is usually the case in supersonic flows with
sufficiently high Mach numbers. Then the linear instability-wave growth rate will be
O(e/?) (Goldstein & Choi 1989) as the nonlinear region is approached (which fixes
the location of this region).

For the asymptotically more stable flows, such as subsonic boundary layers with
sufficiently small adverse-pressure gradients (= O(c?)) or with sufficiently weak
spanwise mean-flow distortions, ¢ will be small compared to unity, and the lin-
ear growth rate will scale like o over most of the unstable region (Goldstein & Lee
1992; Wundrow et al. 1994; Goldstein & Wundrow 1994). The nonlinear critical-layer
effects will therefore come into play over most of the unstable region (and not just
near the neutral curve) if we take

o(e/o)* = o, when A=0(1), o(e/Ao)"/? =0*, when A - . (2.6)

1/3

And for even more stable flows, such as accelerating boundary layers (Reid 1965; Wu
1993) with O(1) pressure gradients, the growth rate will be O(c?) over the main part
of the unstable region. In which case, the nonlinear critical-layer effects will come
into play in the major portion of this region if we take

(e/A)/? =0, as A — oo. (2.7)

Finally, we note that the phase speeds of the oblique and plane-wave modes, ¢ and
co, respectively, will only be equal (i.e. resonance will only occur) if @ and 3 satisfy
(2.1), or equivalently if o and 3 satisfy (2.1) to within order o(e/(1 4+ \)o)'/2.

3. Critical layer dynamics and the amplitude equations

The lowest-order critical-layer equations turn out to be linear and (in the most gen-
eral case) correspond to a balance between growth (i.e. non-equilibrium), mean-flow
convection and viscous-diffusion effects. The nonlinear and modal interaction effects

Phil. Trans. R. Soc. Lond. A (1995)
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are weak in the present description, which means that they do not affect the low-
est order equations, but enter only through inhomogeneous terms in a higher-order
problem. This ultimately implies that the scaled oblique-mode amplitude function A
can be determined from a single amplitude equation or that the amplitude functions
A and Ap can be determined from a pair of amplitude equations — depending on
whether or not the parametric resonance stage plays a role in the interaction. In
the former case, the relevant equation corresponding to the generalized scaling (2.3)
through (2.5) is given by Goldstein & Choi (1989), Wu et al. (1993), Goldstein &
Wundrow (1994) and Leib & Lee (1994) as

- z Ty - - - -
— =KA + 1’3// / KQA($1)A(.'L'2)A* (361 —+ o — f) dSCQ dSCl, (31)
and, in the latter case, are given by Goldstein & Lee (1992, 1993), Wu (1992),
Goldstein (1994) and Mallier & Maslowe (1994) as
dA(E) _
dz

A +l/ K()A()(ZEI)A (2$1 —$)d.’111

+1’y/ / K,T/gA 1) A(z)A* 2y + 29 — &) dzodzy,  (3.2)

2.’111 + X9 — 233) + KQA(ZUl)A()(CCQ)A (l‘l + 2.’112 - 25&)] dSCQ d])l

+1,5»y/ / / KsA(x1)A(2)Alzs)

x A* (1 + x2 + x3 — 2%) dzg dzo day, (3.3)

where the asterisks denote complex conjugates; Z, A and A, are suitably renormal-
ized, and shifted variables corresponding to zg, A4, and Ag, respectively; and p and
4 are complex parameters which are dependent on the basic mean flow. The real
parameter K represents the linear growth rate of the oblique mode, or the resonant
growth rate of this mode when there is a sufficiently strong spanwise distortion of
the mean flow. The real part of g is the scaled linear growth rate of the plane wave.
Its imaginary part g, Koj, accounts for the initial wave-number shift between the
oblique and plane-wave modes.

Notice that these are integro-differential equations of the type first proposed for
Rossby waves by Hickernell (1984), rather than the usual ordinary differential equa-
tions of the classical Stuart-Watson-Landau (Landau & Lifshitz 1987) theory. The
integrals arise from upstream history effects that produce a gradual phase shift-
ing between modes when the nonlinearity takes place within a non-equilibrium (or
growth-dominated) critical layer. This occurs because the evolution or growth effects
have a dominant (i.e. first-order) effect on the flow within the critical layer, but only
weakly affect the flow outside the critical layer. The nonlinear (or wave-interaction)
terms are therefore influenced by the growth effects when they are generated within
the critical layer, but not when they are generated outside the critical layer, as in
the classical Stuart—-Watson-Landau theory.

The nonlinear kernel functions Ky, K and K;—K3 will be discussed subsequently.

Phsl. Trans. R. Soc. Lond. A (1995)
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They turn out to be simple polynomial functions of the streamwise (and correspond-
ing integration) variables in the inviscid limit A — 0, and in the general case involve
integrals of exponentials and polynomials of the streamwise coordinates. Ky explic-
itly depends on the obliqueness angle § and Kr/3 = Ko—r/3.

Classical Stuart—-Watson-Landau theory suppresses the critical-layer effects —
which can only be justified when the Reynolds number is assumed to be sufficiently
small. For inviscidly unstable boundary layers, this assumption is inconsistent with
the locally parallel flow approximation (Huerre 1980; Huerre 1987; Goldstein & Leib
1988; Goldstein & Hultgren 1988). For high-Reynolds-number viscously unstable
boundary layers, classical weakly nonlinear theory is restricted to a rather smallish
region in the vicinity of the lower branch of the neutral stability curve — in which case
the size of the upstream linear region would have to be extremely small. Moreover,
nonlinearity usually occurs in the vicinity of the upper branch of the neutral stability
curve in most of the relevant boundary-layer experiments (Mankbadi et al. 1993).

To be consistent with our requirement that the solutions evolve from an initially
linear stage, the amplitude equations (3.1) or (3.2) and (3.3) usually have to be
solved subject to the upstream boundary conditions

A—a®eR Ay - ™t a5 F — —o0, (3.4)

so that they match onto the linear small growth-rate solution far upstream, or that
they match onto the appropriate resonant growth-rate solution when spanwise dis-
tortion effects play a role — however, see § 6 below for an important exception to this.
Notice that only the first term on each of the right-hand sides of equations (3.2) and
(3.3) contributes to these equations when A and A, are sufficiently small — as they
are initially — and that (3.4) is then an exact solution to the resulting equations.

We include the linear wave-number shift <¢; to allow for an appropriate amount of
wave-number detuning in the analyses, which means that resonance (2.1) does not
necessarily have to be exact and that the analysis actually applies to a relatively
broad wave-number range about this resonance condition. And even more generally,
we could modify equations (3.1)-(3.3) to include wave-packet effects, as in Huerre
(1980), Smith & Stewart (1987), Smith & Bowles (1992) and Wu et al. (1994) — but
in the interest of simplicity, we do not pursue this issue here.

When applied, for example, to adverse-pressure-gradient boundary layers, the
solutions to equations (3.2) and (3.3) are not uniformly valid in frequency as
Aw' /Uy — 0. This is because there is a viscous Stokes layer at the wall that even-
tually contributes a term

(o0)’U?
(¢/0) /312 Re(2wt AJUL)5]/2”

where U/ is the Blasius skin friction, to the scaled linear growth rate o when Aw' /U,
becomes sufficiently small. However, the relevant solutions can easily be made uni-
formly valid for all frequencies (except in the immediate vicinity of the lower branch)
by simply replacing the relevant linear growth rates (£ and ¢ in equations (3.2) and
(3.3), respectively) by

N (00U
5 (e/o)/3[Re(2wt A /UL, )% V/27
_ (3.5)
S CONYS
Ko — Ko +

(¢/0)1/3[2 Re(2wt A/UL.)%]1/2"
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4. The mean-flow change

A significant feature of the present high-Reynolds-number approach is that the
nonlinear critical-layer interaction produces a spanwise-variable mean-flow change

)eiZ (4.1)

that is of the same order as the oblique-mode instability wave (see equation (2.2))
that initially produces the interaction. However, the associated cross-flow velocities

v =ce(e/a) P Retpe??, w = e(e/o)® Rewyer? (4.2)

turn out to be somewhat smaller than this.
In the remainder of the paper, we discuss the implications of the fundamental
equations (3.1)—(3.3).

u = e Rety(y, zo

5. The pure oblique-mode interaction

We begin by considering the case where only the oblique modes enter into the
interaction. We have seen that this situation is relevant to supersonic boundary
layers and to subsonic flows with sufficiently strong streamwise vortices. It should
therefore be highly relevant to the original Klebanoff et al. (1962) experiment (i.e.
K-type transition).

The common oblique-mode amplitude is now determined by equation (3.1). Its
kernel function Kj is relatively complicated when viscous effects are retained, as in
Wu et al. (1993), but in the inviscid limit originally considered by Goldstein & Choi
(1989) and Goldstein & Wundrow (1994), it is simply

Ky = —Ltan?0cos20(z — 21)[(& — 1) + (& — 22)® — c0s 20(% — 22) (71 — 22)], (5.1)

provided that ¢ < 1 in the case where streamwise vortices play a role. Wundrow
& Goldstein (1994) also considered the streamwise vortex problem in the order-one
wavelength, i.e. the o = 1 limit. They show that the instability-wave amplitude is
still given by (3.1), provided the nonlinear kernel functions is taken to be a slight
generalization of (5.1).

Ky vanishes when § = %77, and the inviscid solution to (3.1) develops a singularity
at a finite downstream position (Goldstein & Choi 1989), say s, at all other angles.
A therefore exhibits explosive growth at &5, with the local asymptotic behavior being
given by (Goldstein & Choi 1989; Shukhman 1991)

~ a - -

ANW, as ¥ — Tg, (52)
where the real parameters a and ¢ are related to the original parameters £ and ¥
through quadratures. Figure 3 is a plot of the scaled amplitude function versus the
scaled streamwise coordinate, as calculated numerically from equations (3.1) and
(5.1) for @ = 1.2 and various values of 8. The curves show that the solution initially
follows the linear growth corresponding to

dA  _ -

Fri RA, (5.3)
and that the explosive growth occurs very suddenly once nonlinearity comes into
play. The dashed curves are the local asymptotic expansions calculated from equa-
tion (5.2). This result implies that the overall wave-number/growth-rate scaling is
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Figure 3. A plot of the scaled amplitude against the scaled streamwise coordinate: (a) 6 = 15°;
(b) 6 = 30° (c) 8 = 60° (d) 6 = 75°. Solid lines: numerical solutions; dotted lines: local
asymptotic solutions (from Wu et al. 1993).

preserved right up to the singularity when ¢ = 1, which means that the overall
asymptotic structure remains intact until the instability-wave amplitude becomes
O(1) everywhere in the flow, and that the motion is then governed by the full non-
linear Euler equations in the next stage of evolution.

However, the growth-rate amplitude scaling is not preserved in the long wave-
length limit o — 0 (corresponding to, say, the weak streamwise vortex-amplification
mechanism). In this case, the critical layer expands to fill the inviscid wall layer that
surrounds the critical layer, causing the flow to become fully nonlinear while the
instability amplitudes are still small. The next stage of evolution is then character-
ized by a three-layer structure and is governed by the three-dimensional unsteady
‘triple-deck’ equations, but without the viscous terms (Goldstein & Lee 1992). This
does not, however, imply that the relevant scaling is the usual triple-deck scaling in
this stage.

Wu et al. (1993) showed that explosive growth also occurs in the viscous case
and that the local asymptotic behaviour in the vicinity of the singularity is still
given by (5.2). However, they also showed that (as in Goldstein & Leib (1989) and
Leib (1991)) there is a certain range of parameters where explosive growth does not
occur when the viscous parameter A exceeds a certain (usually very large) value. The
instability wave will then reach a peak amplitude at some fixed streamwise location
and subsequently undergo viscous decay downstream of that point.

6. The parametric resonance interaction

Now suppose that the scaled oblique-mode amplitude A is very small and remains
that way during the entire resonant interaction. Notice that this includes the case
A = O(e/a)/3, where the oblique mode has the same amplitude scaling as the plane
wave (as was originally pointed out by Goldstein & Lee 1992).

The last term can be neglected on the right-hand side of equation (3.2), which
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then becomes
dA
i = RA+i Kvo(xl)A (22, — Z) dzy, (6.1)

while the plane-wave amplitude equatlon (3.3) reduces to the linear growth-rate
equation

ﬁ - FE()A(), (62)

which merely reflects the fact that there is no back reaction of the oblique mode
on the plane wave. It may seem rather surprising that this occurs even when the
oblique-mode amplitude is much larger than that of the plane wave, but the critical-
layer velocity jump that would produce back reaction at this level turns out to be
identically zero. It is worth noting that the back-reaction effects would have to be
quadratic in the oblique-mode amplitudes if they occurred at the equi-amplitude
stage.

Since the second member of the oblique-mode equation (6.1) is now linear in A,
we refer to it as the parametric resonance term. Its kernel function, which was ﬁrst
given in Goldstein & Lee (1993), is

Ko = 3(& —m1) exp(~2A(E — 21)%), (6.3)

where ) is a suitably renormalized parameter corresponding to . Goldstein & Lee
(1992) give an analytical solution to (6.1) through (6.3) for the inviscid limit A = 0
and Wundrow et al. (1993) extend it to the viscous case where A = O(1). These
solutions show that the oblique-mode instability-wave amplitude can be represented
by an infinite series of terms — each of which exhibits exponential growth. They also
show that A tends to be dominated by the lower-order terms at small values of Z,
but that the higher modes rapidly come into play and the ‘infinite tail’ of the series
eventually determines the behaviour of the solution at large values of Z. This leads
to the conclusion that

A~y exp( iargidy) exp(Ford/5) exp (/

— 00

Zo

(14 )1/4d:z:> as & — oo,  (6.4)

provided that the shifting of the coordinate is correct to O(co) in the long-wavelength
limit, where 0 < 1 and & = %ko. Here, g is a shifted coordinate corresponding to
Z, o is a real constant, and Ay is given by equation (6.2).

Notice that Ky (as given by equation (6.3)) becomes highly concentrated around
Z = x; in the strongly viscous limit:

X — oo, with &= A3k = 0O(1). (6.5)
Equation (6.1) therefore reduces to the ordinary differential equation
dA . 4.a o
e RA+ 21AgAY, (6.6)
where
G35 A= AVA and Ao(d) = A, (67)

The limit (6.5) corresponds to (among other things) the flat plate or Blasius boundary
layer, i.e. the flow in which the resonant-triad interaction was first analysed by Craik
(1971). In fact, equation (6.6) is within a constant factor of the equation obtained by
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Craik (1971), who used conventional Stuart-Watson-Landau theory (Stuart 1960;
Watson 1960; Landau & Lifshitz 1987) together with finite Reynolds-number-type
arguments to derive his result. The corresponding limiting form of the general plane-
wave amplitude equation (3.3) is still the linear equation (6.2).

Virtually all subharmonic transition experiments have been carried out in flat-
plate boundary layers with very-low free-stream Mach numbers so that the Blasius
boundary-layer solution provides an appropriate description of the mean flow. The
amplitude/growth-rate scaling for linear instability waves in the major portion of the
unstable Reynolds-number range is then given by equation (2.6) and as shown, for
example, by Bodonyi & Smith (1981) and Goldstein et al. (1986), Re = O(c~'9) and
2wt AUy = O(c?) in this range. In which case, it follows from equation (2.6) and the
definition of A that ¢ = é0'® and A = 0=%/2, and, therefore (in view of equation (6.5)),
that both terms on the right-hand side of equation (3.5) are of the same order. This
scaling is valid at all sufficiently large Reynolds numbers including those correspond-
ing to the upper branch of the neutral stability curve. Mankbadi et al. (1993) point
out that the initial parametric resonant interaction first becomes significant in the
vicinity of (and in some cases downstream of) the upper branch in virtually all sub-
harmonic transition experiments carried out to date. They also note that it occurs at
relatively small values of the frequency parameter 2w'A/U,, Re = ¢? — presumably
because, as theory suggests, the relative strength of this interaction increases with
decreasing o. The present asymptotic theory, which holds at small values of o, should
therefore provide a reasonable description of this phenomenon.

The classical high-Reynolds-number asymptotic solution for the upper branch of
the neutral stability curve (Reid 1966) is the relevant solution in the initial linear
and non-interacting stage. This solution is basically inviscid except for a thin viscous
wall layer and a relatively thin critical layer which is asymptotically distinct from the
wall layer. The lowest-order critical-layer equation corresponds to a balance between
mean-flow convection and viscous diffusion effects.

As in the general case discussed above, the first modal interactions occur within
the critical layer once the linear plane-wave amplitude becomes sufficiently large, but
since the lowest-order critical-layer equations now correspond to a balance between
linear convection and viscous diffusion effects, the oblique instability-wave amplitude
is determined by the viscous critical-layer amplitude equation (6.6). However, this
equation, together with equation (6.2), shows that the oblique-mode growth rate
(dA/dz)/A continues to increase as the instability waves propagate downstream, so
that the non-equilibrium (or growth) effects, which are missing in the lowest-order
critical-layer equations, must eventually come into play — causing equation (6.6) to
become invalid.

In fact, equations (6.2), (6.6) and (6.7) imply that (Craik 1971; Wundrow et al.
1993)

A ~ Cyexp(in/4) exp (k:ﬁ + 43

exp(kmﬁs)) , as & — oo, (6.8)
Kor

where Cj is a real constant: we have chosen the origin of the coordinates so that
A() = exp(/%m:f:), (69)

and, for simplicity, we assume that & is real.
_ Notice that equation (6.8) does not reduce to the limiting form of equation (6.4) as
A — 00, which means that the limits A — oo and & — oo cannot be interchanged and,
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consequently, that there must be some intermediate solution that connects asymp-
totic solutions (6.4) and (6.8). In fact, Wundrow et al. (1993) show that approxima-
tion (6.6) becomes invalid when 42 = O(In A?/3) and that the non-equilibrium effects
become of the same order as the viscous effects for larger values of £, at which point
the flow begins to evolve on the faster scale

_ 1 _ _
=73 (x ~=—1I >\2/3> = \3%,, (6.10)
Or
where
1 -
i1 =4 — —InA%3 (6.11)
Kor

is an appropriately shifted coordinate on the Z-scale, and the oblique-mode amplitude
is determined by the fully non-equilibrium equation (6.1), but with Ay(Z) treated as
a slowly varying function of  and the linear growth term treated as a higher-order
effect. The relevant solution has the wkBJ form (Goldstein 1994)

A=C, exp(iw/4)\/gbq exp(2?/3) /OI1 b(€) d¢, (6.12)

where the prime denotes differentiation with respect to Z, ¢ = &/Fo, b is determined
by the transcendental equation

b(&n) = 2Ao(21) / T oxp(— 207 — 2b(31)0)C2 de, (6.13)

A= ZA, (6.14)

> =

and Cj is a real constant. X
Notice that Ag — 0, b — %AO and, consequently, that

N2/3

_ 3
A— C’O(%)q\/km exp(ir/4) exp (/%:i’l + 17 (exp(forZy) — 1)) ,  as & — —o0,
Or

(6.15)
which means that the solution (6.12) will match onto the asymptotic expansion (6.8)
of the solution to the viscous-limit equation (6.6) if we take

_3;\(2/3>)

6.16
4Rop ( )

Co = V/ko:Co(3X!/%)Texp <
This shows that the critical-layer dynamics are eventually controlled by non-
equilibrium (or growth-rate) effects, even in the Blasius boundary layer, and that
the uniformly valid solution for the instability-wave amplitude is ultimately deter-
mined by non-equilibrium equation (6.1) and not by the viscous-limit equation (6.6).
Figure 4 is a plot of the oblique-mode growth rate as calculated from the full
non-equilibrium equation (6.1) for various values of the nearly constant scaled plane-
wave amplitude Ay. The straight line is the result obtained from viscous limit equa-
tion (6.6). Notice that the non-equilibrium growth rates are consistently lower then
the corresponding equilibrium values, which might, as pointed out by Khokhlov
(1994), just explain the discrepancy between the growth rates predicted by the clas-
sical Craik-type theories and those observed experimentally.
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Figure 4. Oblique mode growth rate as a function of scaled plane-wave amplitude. (Prepared
) by Dr Sang Soo Lee.)

7. The full resonant-triad interaction

_ Equations (6.12) and (6.13) show that the oblique mode continues to grow (when
Ay is given by equation (6.2)) and must therefore eventually become large enough to
not only react back on the plane wave but also interact nonlinearly with itself. The
plane wave and oblique mode will then both evolve on the faster scale Z as defined
in equation (6.10). -

The simplest way to show this is to notice that the viscous parameter A can
be scaled out of the general equations (3.2) and (3.3) by introducing the scaled
dependent and independent variables (6.10), (6.14), along with Ay = Ay/\*/®, and
then replacing the linear growth rates & and ko by the scaled growth rates &/A/% and
Ro/ A/3 respectively. Then, aside from the vanishing of the linear growth terms, the
resulting equations will remain unchanged in the limit A — oo, with & (as defined
by equation (6.5)) and the barred variables held fixed. These latter equations do
not possess solutions that satisfy the linear upstream boundary conditions (3.4), but
they do possess solutions that satisfy the alternative conditions

A — @ exp(in/4) exp(boz), Ag— 1, asi — —oo, (7.1)

where
by = %/0 C?exp(—¢® — 2bo¢) d¢, (7.2)

and therefore match onto the #; — 0 limit of the parametric resonance solution (6.12)
and (6.13) and the linear plane-wave solution Ay = exp(fod1).

The previous results show that these latter solutions match onto an intermediate
viscous parametric resonance stage (which is governed by equation (6.6)) and, con-
sequently, onto the same upstream boundary conditions as equations (6.9) and (6.6)
(i.e. equation (3.4) with the ~ replaced by ) provided, of course, that

a© = O(AY exp(—32*/% [4q,)).

This means that the fully interactive stage will be governed by the full non-
equilibrium equations (3.2) and (3.3) if the oblique modes are exponentially smaller
than the plane wave at the start of resonance — even in the Blasius boundary layer.
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The smaller linear growth rate of the oblique modes could easily cause this situation
to occur — even when all the modes have the same amplitude at the start of the
linear stage.

We now return to the general resonant-triad equations (3.2) and (3.3). The signifi-
cance of the various terms in equation (3.2) has already been discussed. The relevant
kernel functions are given by (5.1) and (6.3). However, we have not, as yet, discussed
the nonlinear terms in equation (3.3). They account for the back reaction of the
oblique mode on the plane wave — with the first group representing a kind of mutual
interaction. The relevant kernel functions are given by Goldstein & Lee (1992) and
Mallier & Maslowe (1994) in the inviscid limit, and by Wu (1994) in the general case.

The last term in equation (3.3), which is quartic in the oblique-mode amplitudes,
does not involve the plane-wave amplitude at all. The early, i.e. finite Reynolds-
number-type, analyses of the resonant-triad interaction (see, for example, Craik
(1971) and other references) involve a corresponding back-reaction term that is,
however, only quadratic in the oblique mode amplitudes. The kernel function for
this last term (of equation (3.3)) is also given by Goldstein & Lee (1992) and Mallier
& Maslowe (1994) in the inviscid limit and by Wu (1994) in the general case.

8. Concluding remarks

In most boundary layer flows, it is the oblique-mode instability waves that ul-
timately exhibit the most rapid growth — either directly from the initial linear
stage or indirectly through an intermediate parametric resonance stage. The cu-
bic self-interaction between the oblique-mode instability waves is one of the first
strictly nonlinear interactions to come into play as the instability waves evolve down-
stream in such flows. This interaction can have a dominant effect on the subsequent
instability-wave development — producing a local singularity (and consequently ex-
plosive growth) at a finite downstream position in the inviscid limit and sometimes
producing viscous decay when viscosity is present (Goldstein 1994; Wu 1993).

The more or less general case is described by equation (3.1), or by equations (3.2)
and (3.3), but depending on the initial amplitude ratio and the external parameters,
various limiting forms of these equations can apply to different regions of the flow —
giving rise to a wide variety of different phenomena. The nonlinear interaction also
produces a spanwise variable mean-flow change in the linear region outside the critical
layer. It is of the same order as the oblique-mode instability waves in the inviscid
case, but can be even larger than these in the strongly viscous case (Goldstein 1994).

The author thanks Professor R. E. Kelly for first suggesting that three-dimensional nonlinear
critical layers would be scientifically interesting, Professor F. T. Smith for suggesting that the
resonant-triad analysis be continued into the fully coupled stage, and his colleague, Dr Sang Soo
Lee, for preparing figure 4. The author also thanks his colleagues, Dr Sang Soo Lee, Dr David
Wundrow, Dr Lennart Hultgren, Dr Reda Mankbadi and Dr Stewart Leib for their helpful
comments during the course of this work.
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